Total variation regularized nonlinear inversion for parallel MRI with variable density sampling patterns

Christian Clason1 Florian Knoll2

1Institute for Mathematics and Scientific Computing, Karl-Franzens-Universität Graz

2Institute of Medical Engineering, Graz University of Technology

Workshop on Novel Reconstruction Strategies in NMR and MRI
Göttingen, September 11, 2010
1. Nonlinear inversion
2. Variable density sampling patterns
3. IRGN with TV regularization
4. Example reconstructions
5. IRGN with TGV regularization
Parallel MRI as inverse problem

Given

- sampling operator \mathcal{F}_S (defined by trajectory)
- acquired k-space coil data $g = (g_1, \ldots, g_N)^T$

Find

- spin density u
- coil sensitivities $c = (c_1, \ldots, c_N)^T$

such that

$$F(u, c) := (\mathcal{F}_S(u \cdot c_1), \ldots, \mathcal{F}_S(u \cdot c_N))^T = g$$

nonlinear inverse problem, ill-posed \leadsto solve using IRGN method
Iteratively regularized Gauß-Newton method

1: Choose \(x^0 = (u^0, c^0) \), \(\alpha_0 \), \(q < 1 \)
2: repeat
3: Solve for \(\delta x = (\delta u, \delta c) \) (e.g., by CG on normal equations)

\[
\min_{\delta x} \frac{1}{2} \| F'(x^k) \delta x + F(x^k) - g \|^2 + \frac{\alpha_k}{2} \| W(c^k + \delta c) \|^2 + \frac{\alpha_k}{2} \| u^k + \delta u \|^2
\]
4: Set \(x^{k+1} = x^k + \delta x \), \(\alpha_{k+1} = \alpha_k q \), \(k = k + 1 \)
5: until \(\| F(x^k) - g \| < tol \)

\(W \) high-order differential operator (enforces smooth sensitivities)
\(F' \) Fréchet derivative with adjoint \(F'^* \)
Nonlinear inverse problem approach

Advantage:

Flexibility in
- Sampling strategy (choice of \mathcal{F}_S)
- Incorporation of a priori information (choice of penalty)
- Minimization method (choice of gradient descent method requiring only application of $\mathcal{F}_s, \mathcal{F}_s^T$)

Disadvantage:

Can be less efficient than specialized methods
Choice of sampling strategy

Trajectory should:

1. Minimize acquisition time
 \(\Rightarrow \) traverse only part of \(k \)-space

2. Minimize subsampling artifacts
 \(\Rightarrow \) denser sampling of center of \(k \)-space (auto-calibration)

3. Allow fast reconstruction
 \(\Rightarrow \) availability of (N)FFT

Here:

- radial sampling
- adapted Cartesian random sampling
Cartesian random sampling

Advantages of Cartesian random sampling patterns:
- Easy to implement: standard FFT/gradients + binary mask
- Incoherent aliasing artifacts
- Allows non-uniform sampling by non-uniform probability for sampling points

Open question: Good choice for non-uniform probability (how to sample middle frequencies?)

Idea: look at coefficient distribution of (reasonably similar) template images (only magnitude important, not phase!)
Adapted Cartesian random sampling

Procedure

1: choose template image u_t (same anatom. region, resolution)
2: set $p = |\mathcal{F}u_t|$, (apply smoothing/averaging,) rescale
3: repeat
4: draw sampling points from Cartesian grid points using Monte Carlo method with p.d.f. p
5: until desired acceleration factor is reached
6: (add postprocessing to avoid holes)

Main advantage: Good results without parameter tuning, robust
Adapted random sampling: Example

log-plot of probability density function (generated from raw data)
Adapted random sampling: Example

(a) pattern $R = 4$

(b) zero-filled SOS (no dens. comp.)
Adapted random sampling: Example

(c) pattern $R = 10$

(d) zero-filled SOS (no dens. comp.)
Adapted random sampling: Example

(e) pattern $R = 18$

(f) zero-filled SOS (no dens. comp.)
Choice of penalty

- IRGN suffers from noise amplification when α_k too small
- aliasing artifacts are incoherent, noise-like

\Rightarrow add stronger penalty for image content

Here:

Total variation

$$TV(u) = \int |\nabla u|_2 \, dx$$

Pro: preserves edges while removing smooth variations

Con: non-quadratic, non-differentiable
Replace L^2 penalty on u^{k+1} with TV:

1: Choose $x^0 = (u^0, c^0), \alpha_0, \beta_0, q < 1$
2: \textbf{repeat}
3: Solve for $\delta x = (\delta u, \delta c)$
 \[
 \min_{\delta x} \frac{1}{2} \| F'(x^k) \delta x + F(x^k) - g \|^2 + \frac{\alpha_k}{2} \| W(c^k + \delta c) \|^2 + \beta_k TV(u^k + \delta u)
 \]
4: Set $x^{k+1} = x^k + \delta x, \alpha_{k+1} = \alpha_k q, \beta_{k+1} = \beta_k q, k = k + 1$
5: \textbf{until} $\| F(x^k) - g \| < tol$
6: \textbf{return} u, c
Solution of TV subproblems

Set $J(\delta x) := \frac{1}{2} \| F'(x^k) \delta x + F(x^k) - g \|^2 + \frac{\alpha_k}{2} \| W(c^k + \delta c) \|^2$

Step 3

$$\min_{\delta u, \delta c} J(\delta u, \delta c) + \beta_k TV(u^k + \delta u)$$

non-smooth, convex optimization problem \leadsto use convex duality

$$\beta TV(u) = \sup_{\{ |p(x)|_2 \leq \beta \}} \langle u, -\text{div} \, p \rangle$$
Solution of TV subproblems

Saddle point problem

\[
\min_{\delta u, \delta c} \max_{p \in C_{\beta_k}} J(\delta u, \delta c) + \langle u^k + \delta u, -\text{div} \ p \rangle
\]

with \(C_{\beta} = \{ p : |p(x)|_2 \leq \beta \text{ for all } x \} \) convex, \(J \) differentiable

\(\iff \) use **projected gradient descent/ascent method**:

- Requires only application of \(F', F'^* \) (i.e., \(\mathcal{F}_s, \mathcal{F}_s^* \))
- Straightforward parallelization
- Order-optimal algorithms available

Here: **Primal-dual extragradient algorithm**, based on Pock/Cremers/Bischof/Chambolle (2009)
Primal-dual extragradient method

1: function \text{TVSOLVE}(u, c, \alpha, \beta, \sigma_u, \sigma_c, \tau)
2: \delta u, \overline{\delta u}, \delta c, \overline{\delta c}, p \leftarrow 0
3: \text{repeat}
4: p \leftarrow \text{proj}_\beta(p + \tau \nabla (u + \overline{\delta u}))
5: \delta u_{\text{old}} \leftarrow \delta u, \delta c_{\text{old}} \leftarrow \delta c
6: \delta u \leftarrow \delta u - \sigma_u(\partial_u J(u, c)(\overline{\delta u}, \overline{\delta c}) - \text{div } p)
7: \delta c \leftarrow \delta c - \sigma_c(\partial_c J(u, c)(\delta u, \delta c))
8: \overline{\delta u} \leftarrow 2\delta u - \delta u_{\text{old}}
9: \overline{\delta c} \leftarrow 2\delta c - \delta c_{\text{old}}
10: \text{until convergence}
11: return \delta u, \delta c
12: end function
Algorithm

- Compute projection on C_{β} pointwise by

$$proj_{\beta}(q)(x) = \frac{q(x)}{\max(1, \beta^{-1}|q(x)|_2)}$$

- Computation of $\partial_u J(u, c)(\delta u, \delta c)$ and $\partial_c J(u, c)(\delta u, \delta c)$ identical to CG iteration for IRGN

- Step lengths σ_u, σ_c, τ related to Lipschitz constants of $F'(u^k, c^k), \nabla$
Examples: random sampling

- raw data from brain and phantom
- 3D gradient echo sequence, 3T system, 12 channel head coil
- 8 (phantom: 9) virtual channels (SVD) used for reconstruction
- sequence modified using binary 2D mask to define subsampling pattern
- subsampling $R = 4 \ (10)$
- sequence parameters
 - repetition time TR=20ms
 - echo time TE=5ms
 - flip angle FA=18°
 - matrix size (x,y,z)=256x256x256
 - FOV=250mm
 - slice thickness brain 1mm (phantom 5mm)
Reconstructions: random \((R = 4)\)

(a) IRGN

(b) IRGNTV
Reconstructions: random ($R = 4$)

(a) IRGN (detail)
(b) IRGNTV (detail)
Reconstructions: random \((R = 4)\)

(a) IRGN

(b) IRGNTV
Effect of TV

Since $\beta_k \to 0$, final TV effect is not very strong

Pro: No introduction of typical TV-artifacts (cartooning, stair-casing)

Con: Strong effect can be desired if piecewise constant is a good prior (i.e., for higher acceleration, cf. phantom)

\implies stop decreasing TV penalty parameter at desired value:

$$
\alpha_{k+1} = \alpha_k q
$$

$$
\beta_{k+1} = \max(\beta_{\text{min}}, \beta_k q)
$$

For illustration: Phantom with $\beta_{\text{min}} = 5 \cdot 10^{-3}$
Effect of TV ($R = 4$)

(a) IRGN

(b) IRGNTV
Effect of TV \((R = 10) \)

(a) IRGN
(b) IRGNTV
Examples: radial sampling

- raw data of phantom and heart
- radial FLASH sequence, 3T System, 32 channel coil
- 8 (cardiac: 12) virtual channels (SVD) used for reconstruction
- 25 (19) projections, $R \approx 8$ (10.5)
- No postprocessing, temporal view sharing
- sequence parameters
 - repetition time TR=2.0ms
 - echo time TE=1.3ms
 - flip angle FA=8°
 - 256 points per proj. (2x oversampling) \leadsto matrix 128x128
 - slice thickness 8mm, in plane resolution 2mm x 2mm

(data courtesy of Martin Uecker)
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN
(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: phantom (25 proj)

(a) IRGN

(b) IRGNTV
Radial sampling: cardiac (25 proj \approx 20 fps)

(a) IRGN

(b) IRGNTV
Radial sampling: cardiac (19 proj \approx 26 fps)

(a) IRGN
(b) IRGNTV
Total generalized variation (TGV)

Large TV penalty leads to stair-casing \Rightarrow include penalty on higher derivatives, promoting piecewise smooth reconstruction

Here: second order **total generalized variation**

\[
\beta TGV^2(u) = \sup_{v \in C^2_\beta} \langle u, \text{div}^2 v \rangle
\]

with

\[
C^2_\beta = \{ v \in C^2_c(\Omega, S^{d \times d}) : \| v \|_\infty \leq 2\beta, \| \text{div} v \|_\infty \leq \beta \}
\]

(see http://math.uni-graz.at/mobis/publications/SFB-Report-2010-023.pdf for details)
IRGNTGV

Replace TV penalty on u^{k+1} with TGV:

1: Choose $x^0 = (u^0, c^0)$, α_0, β_0, $q < 1$
2: repeat
3: Solve for $\delta x = (\delta u, \delta c)$

$$\min_{\delta x} \frac{1}{2} \| F'(x^k) \delta x + F(x^k) - g \| ^2 + \frac{\alpha_k}{2} \| W(c^k + \delta c) \| ^2$$

$$+ \beta_k TGV^2(u^k + \delta u)$$

4: Set $x^{k+1} = x^k + \delta x$, $\alpha_{k+1} = \alpha_k q$, $\beta_{k+1} = \beta_k q$, $k = k + 1$
5: until $\| F(x^k) - g \| < tol$
6: return u, c
Solution of IRGNTGV subproblems

Convex duality:

\[
\beta TGV^2(u) = \inf_{v} \beta \|\nabla u - v\| + 2\beta \|\mathcal{E} v\|
\]

Here: \(v \in C^1(\Omega, \mathbb{C}^d) \), \(\mathcal{E} v = \frac{1}{2}(\nabla v + \nabla v^T) = (-\text{div}^2)^* v \)

\(\leadsto \) **Interpretation:** TGV balances first and second derivative

Saddle point problem

\[
\min_{\delta u, \delta c, v} \max_{p \in C_{\beta_k}} J(\delta u, \delta c) + \langle \nabla u^k + \delta u - v, p \rangle + \langle \mathcal{E} v, q \rangle
\]
Primal-dual extragradient method

1: function TGV\text{SOLVE}(u, c, \alpha, \beta, \sigma_u, \sigma_c, \sigma_v, \tau)
2: \delta u, \overline{\delta u}, \delta c, \overline{\delta c}, v, \overline{v}, p, q \leftarrow 0
3: repeat
4: p \leftarrow \text{proj}_\beta(p + \tau(\nabla (u + \overline{\delta u}) - v))
5: q \leftarrow \text{proj}_{2\beta}(q + \tau(\mathcal{E} v))
6: \delta u_{old} \leftarrow \delta u, \delta c_{old} \leftarrow \delta c, \ v_{old} \leftarrow v
7: \delta u \leftarrow \delta u - \sigma_u(\partial_u J(u, c)(\overline{\delta u}, \overline{\delta c}) - \text{div } p)
8: \delta c \leftarrow \delta c - \sigma_c(\partial_c J(u, c)(\overline{\delta u}, \overline{\delta c}))
9: v \leftarrow v - \sigma_v(-p - \text{div } 2q)
10: \overline{\delta u} \leftarrow 2\delta u - \delta u_{old}
11: \overline{\delta c} \leftarrow 2\delta c - \delta c_{old}
12: \overline{v} \leftarrow 2v - v_{old}
13: until convergence
14: end function
Effect of TGV: Random ($R = 4$)

(a) IRGNTV

(b) IRGNTGV

Examples TGV
Effect of TGV: Random ($R = 4$)

(a) IRGNTV (detail)
(b) IRGNTGV (detail)
Effect of TGV: Random \((R = 10) \)

(a) IRGNTV

(b) IRGNTGV
Effect of TGV: Random ($R = 10$)

(a) IRGNTV (detail)
(b) IRGNTGV (detail)
Effect of TGV: Random ($R = 18$)
Effect of TGV: Random \((R = 18)\)

(a) IRGNTV (detail)

(b) IRGNTGV (detail)
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV
(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV
(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV
(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Radial sampling: phantom (25 proj)

(a) IRGNTV

(b) IRGNTGV
Conclusion

Summary:
- Nonlinear inverse approach gives flexibility
- IRGNTV more stable, same complexity as IRGN
- IRGNTGV better for modulated images

Outlook:
- Add constraint on slice/frame differences; 3DT(G)V
- Include parameter identification in IRGN

Thanks to Martin Uecker (FLASH data), Kristian Bredies (TGV)
Computation of gradients

\[
J(\delta u, \delta c) = \frac{1}{2} \| F'(x) \delta x + F(x) - g \|^2 + \frac{\alpha}{2} \| W(c + \delta c) \|^2
\]

\[
\partial_u J(u, c)(\delta u, \delta c) = \sum_{i=1}^{N} c_i^* \mathcal{F}_s^*(\mathcal{F}_s(u \cdot \delta c_i + c_i \cdot \delta u) + F(u, c) - g)
\]

\[
(\partial_c J(u, c)(\delta u, \delta c))_i = u^* \cdot \mathcal{F}_s^*(\mathcal{F}_s(u \cdot \delta c_i + c_i \cdot \delta u) + F(u, c) - g)) + \alpha W^* W(c_i + \delta c_i)
\]

\(\rightarrow\) only (N)FFT, pointwise multiplication required