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Real algebraic geometry studies sets defined by systems of polynomial equations over the
reals [5]. Three problems of Hilbert [18] are related to important aspects of real algebraic
geometry.

We examine first these problems, what is known about their solution, and what develop-
ments they led to. We end with a short discussion on the role they played in the development
of real algebraic geometry during this century.

In many cases, the references given in this text point to text books or survey papers where
simple proofs and full references can be found rather than to the original papers.

1. Hilbert’s 17’th problem

It is obvious that a polynomial which is a sum of square is everywhere nonnegative. A very
natural question is the following.

e Is every polynomial everywhere non negative a sum of squares ?

A polynomial everywhere non negative is not always a sum of squares of polynomials.
This result is due to Hilbert [16] but Motzkin [34] was the first in 1967 to construct explicit
examples of this situation. For example

P=7+X'7°+ X°Y* - 3X°Y°Z?
is everywhere non negative and is not a sum of squares of polynomials. This is not too hard

to prove since the degree of the polynomials to look for is at most 3.

Minkowski sugggested to Hilbert the following reformulation, which Is Hilbert’s 17 th
problem :

e s every polynomial everywhere non negative a sum of squares of rational functions?

Now, since denominators are allowed, the space of search for an expression as a sum of
squares is much bigger, and there are no a priori limitations on the degrees to consider.

Emil Artin’s positive answer [2], in 1925, is one of the most convincing succeses of modern
algebra, which was starting at that time.



In order to prove a result about the reals, the method of the proof uses much more
abstract objects, namely real closures of the field of rational functions.

Artin’s proof goes this way :

e Consider a polynomial P which is not a sum of squares of rational functions with real
coefficients.

e Since P is not a sum of squares, the set of sums of squares is a proper cone of the field
of rational functions which does not contain P (a cone of a ring contains the squares, is
closed under addition and multiplication and a proper cone also does not contain —1).

e Using Zorn’s lemma, and taking a maximal proper cone which does not contain P, we
get a total order on the field of rational fucntions for which P is negative.

e Taking the real closure of the field of rational functions for this order, which is the
biggest possible ordered field extending the given order and algebraic over the field of
rational functions, we get a field in which P takes negative values.

e It remains to prove that if P takes negative values in a real closed field containing the
reals, P takes negative values over the reals.

So, for example, Motzkin’s polynomial above is a sum of squares of rational functions,
even it may not be easy to write it explicitly so.

Artin’s proof we just sketched is the starting point of the abstract theory of the reals. Real
closed fields originally defined by Artin and Schreier [3] as ordered fields with no algebraic
ordered extension have been characeterized by Tarski [46] later as fields which are orderd,
where every positive element is a square and every odd degree polynomial has a root. The
real closure of an ordered field is the smallest real closed field containing it.

Many problems remain after Artin’s proof. Among them :

e quantitative aspects : how many squares 7

o effectivity problems : is there an algorithm checking that a given polynomial is every-
where non negative and providing the sum of squares?

e complexity problems : what are the best possible bounds on the degrees of the sum of
squares ?

A bound on the number of squares was proved by Pfister in 1967 [36]: 2" squares are
enough if n is the number of variables of the polynomial P. It is remarkable that the degree
of the polynomial plays no role in the bound on the number of squares needed. The proof
uses Pfister’s theory of multiplicative quadratic forms [36].

The exact bound is far from being known, since the only known lower bound on the
number of squares needed is n + 2.

Since Artin’s proof is based on Zorn’s lemma, no explicit bound can be easily extracted
from its inspection (see [10, 27] though). The explicit construction of the sum of squares is a
difficult problem and has attracted much attention and many contributions (see [10, 11] for
a detailed account of the litterature on this topic).



Hilbert’s 17’th problem can be seen as part of a much more general problem, which is to
provide a dictionary between algebra and geometry in the real case.

In complex algebraic geometry, this dictionary is very classical and given by the corre-
spondance between algebraic sets and radical ideals (a particularly easy to read presentation
can be found in [8]). Artin’s result relates non negativity which is a geometric property to
sums of squares, which is an algebraic notion. Stengle’s positivstellensatz [45], proved in
1974, provides a quite general version of a dictionary between algebra and geometry in the
real case. The version we present here can be found in [5].

[weak Positivstellensatz]

Let R be a real closed field, F,G and H three finite subsets of R[X1,...,Xy], C the cone
generated by F, M the monoid generated by G and T the ideal generated by H.

The following are equivalent:

(i) The set
{reR"|VfeF f(x) >0,Yg€ G g(z) #0, Vh € H h(z) =0}

18 empty.
(ii) There exists f € C, g € M and h € T such that f +g?> +h =0.

This result can be interpreted as follows: if a family of inequalities and equalites is
incompatible, there exists an algebraic certificate testifying it.

Using a classical trick due to Rabinovitch the following result [45] follows.
[Positivstellensatz]

Let G a finite subset of R[X1,...,X,] and
W={zeR"|VgeGg(x)>0}.

Let C bethe cone of R[X1,...,Xy] generated by G, and let f € R[X1,...,Xy]. Then Vz €
W f(z) >0&3dg,heC fg=1+h.

As an immediate consequence of Positivstellensatz, when G = 0, one recovers that a

nonnegative polynomial is a quotient of sums of squares, hence also a sum of squares.

The proof of these results rely on Zorn’s lemma and gets clear using the notion of a prime
cone [7, 5].

It is natural to wonder whether there exists an algorihtm producing the algebraic identities
announced. The answer is yes [26]; a lot remains to do to provide an efficient algorithm [28].

2. Hilbert’s 16’th problem

The first part of this problem is to determine

e the different posible shapes of an algebraic curve, or more generally of a real hypersur-
face in projective space.



We do not discuss the second part of the problem here.

Consider a nonsingular algebraic hypersurface H of degree d in RP™. This polynomial
has a set of zeroes RH in the real projective space RP". The first part of Hilbert’s 16’th
problem asks what are the possible topological types of the painrs (RP™,RH) (for a given
degree d). For the curves of RP? the complete answer is known only up to degree 7. For the
surfaces of RP3, the complete answer is known only up to degree 4.

To make progress on this problem it is needed to work in two main directions: first to
find restrictions on the topologcal types of (RP™, RH), second to construct hypersurfacces
with the types which are not forbidden.

In the study of the topology of real algebraic curves, it is traditional to pay a special
attention to M-curves. An M-cufrve is a curve of RP? such that its set of real points has the
maximal number of connected componnets; this number is equal to (d — 1)(d —2)/2 + 1 for
degree d according to Harnack’s theorem [14].

An owal of a real algebraic projective curve I' is a connected componnet of I whose
complement is not connected. The oreintable connected component of this complement is
the interior of the oval.

Harnack’s theorem gives nor estriction on the relative position of the ovals. The relative
position of ovals in the projective place can be described in terms of nest, when an oval
contains another oval in its interior. The depth of an oval € of I' is the number of obvals
containing €2 in their interiors. Bezout’s theorem creates restrictions. An M-curve of degree 4
with 4 ovals cannot have a nest, because otherwise a line having at least 6 poins of intersection
with the curve could be easily constructed. So the only configuration for an M-courve of
degree 4 is 4 ovals without any nest.

This simple arugment is no more sufficient in degree 6. This case has been completely
solved in 1971 only. The M-curves of degree 6 have 11 ovals. Bezout’s theorem proves that an
oval of depth 2 is impossible and also that there exist at most one oval with other ovals in its
interior. A construction due to Harnack gives a M-curve with the following configuration: an
oval containing another oval in its interior and the nine other ovals outside, without any nest.
This configuration is denoted by 1(1) [[9. A construction by Hilbert [17] gives a different
configuration denoted 1(9) [] 1: an oval containing nine ovals in its interior,the last oval being
outside.

People wondered for a long time whether there are other configurations for an M-curve
of degree 6 , until Gudkov constructed such a curve with a configuration 1(5) []5 [13].

These three configurations are the only possible for the M-curves of degree 6. This is a
consequence of a famous congruence conjectured by Gudkov and proved by Rokhlin [41, 48].

Let I be a non singular real algebraic curvve of even degree 2k in Po(R). It is possible to
chose an homogeneous equation F of I, such that F(z,y,z) < 0,for every (z : y : z) outside
all the ovals of I'. Then, with

Bi={(:y:2) € Po(R) | F(z,y,2) >0} :
[Rokhlin-Gudkov’s congruence]

The Euler-Poincaré characsteristic x(By) is congruent to k* modulo 8.

The Euler-Poincaré characteristic of x(By) can be computed inthe following way. An
oval of T' is even (resp. odd) if its depth is even (resp.odd). The number of even (resp.odd)
ovals of I is denoted by p (resp. n). Then x(B1) =p —n.
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Figure 1

For an M-curve of degree 6, p +n = 11 and, using trhe congruenc, p —n = 9 (mod 8).
The only possibilites are (p =10, n=1), (p =6, n=>5) or (p =2, n =19). Thus the three
configurations described above are the only possible.

The njumbers p and n have been considered first by Virginia Ragsdale [37] who porposed
the conjecture that for every curve of degree 2k,
p< 3k(k2— 1)

_+_1’ ng%(gi_l).

Virginia Ragsdale (1870-1945)

She graduated from Guilford College in 1892. She won the first scholarship
established by Bryn Mawr College for a Guilford woman graduating with the
highest degree average. She took her Bachelor degree in 1896 and was awarded
the Bryn Mawr European Fellowphip. She chose to go to Gottingen for one
year, to study under Hilbert and Klein. She completed her Ph D in Bryn
Mawr in 1096. Her paper ” On the arrangement of the real branches of plane
algebraic curves” [37] was published immediately after her dissertation. She
was instructor, assistant professor, professor and finally head of the department
at Woman’s College in North Carolina. She retired from teaching in 1928 and
took care of her ill mother, taking the responsability of the home.

The spectacular development of the topology of real algebraic varieties in the years 1970
implies new restrictions on the topology of a real algebraic variety. V. Arnold [1], V. Rokhlin
[41, 42, 43] et V. Kharlamov [22, 23, 24] have obtained important general obstructions. The
discovery of new invariants for the varieties of dimension 4 by Seberg and Witten and the
proof of Thom’s conjecture in 1994 [25] have implied new restrictions in the topology of real
algebraic curves [31].

If a lot of work had been done on obstructions, the methods of construction had not
changed much from the 19th century. In 1980, Viro proposed a completely new method to
construct real algebraic varieties [21, 20]. The combinatorial patchwork, which is a particular
case of Viro’s method, gives a recipee to construct hypersurfaces using a simple combinatorial
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procedure. For simplicity the recipee is explained here for curves but the general case is
completely similar.

In order to construct a real algebraic curve in RP?, the following combinatorial data are
given.

Let d be a positive integer and 7" the triangle
{(z,y) €eR?®: >0, y>0, z+y <d}.

The number d will be the degree of the curve constructed and the triangle T' will be the
Newton polygon of the curve.

Suppose that T is triangulated in such a way that all the vertices of the triangulation have
integer coordinates. Suppose also that a sign distribution, a; ; = & is given at the vertices
of the triangulation, (see Figure 2). A piecewise linear curve is L in RP? is constructed as
follows.

Take copies Ty, = $4(T'), Ty = sy(T), Tpy = s(T) of T, where s = s; 05y and sz, sy
are reflexions against the axis of coordinates. Extend the triangulation of T' to a symmetric
triangulation of TUT, UT, UT,,, and extend the sign distribution to a sign distribution at the
vertices of the extended triangulation with the following rule: when a vertex is transformed
into its mirror image with respect to a coordinate axis , its sign is preserved when the distance
to the axis is even and changed when this distance is odd. (see Figure 3).

If a triangle of the triangulation has vertices with different signs, a segment is drawnfrom
the middle of the edges to isolate + from -. The union of these segments is denoted by L'
and is contained in T UT, UT, U Ty, (see Figure 3). Sides of T UT, UT, UTy, are glued using
s . The space T, so obtaine dis homeomorphic to RP?. The curve L is the image of L' in T.

A pair (T, L) is a chart of a real algebraic curve C' in RP?, if there exists an homeomor-
phism between the pairs (T, L) and (RP? RC).

Suppose now that the triangulation of T is convex. This means that there exist a piecewise
convex function v : T — R linear on each triangle of the triangulation and not linear on the
union of two triangles.

[Viro’s theorem]
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If the triangulation de T is convex, there exists a nonsingular real algebraic curve C of degree
d in RP? with chart (T, L).

A curve with chart (T, L) is called a T-curve.

It is easy to verify that the triangulation of
{(z,y)) eR? : >0, y>0, z+y<3}

in Figure 2 is convex. Thus, Figure 3 is a topological picture of acurve of degree 3 in s RP2.
The set of real points of this curve has two connected components in RP?.

The class of T-courbes is quite rich. For example all curve of RP? up to degree 6 are
T-curves. For every degree, there exists a T-curve which is a M-curve. Counter-examples
to Ragsdale conjecture have been constructed as T-curves. [19, 20, 21]. There are also real
algebraic curves of RP? which are not T-curves [19].

3. Hilbert’s 10’th problem

The problem is to answer to the following question:

e is there an algorithm deciding the existence of integer solutions to a set of Diophantine
equations ?



this is to a set of polynomial equations with integer coefficients.

The answer is of course yes for univariate polynomials since there are easy bounds on the
roots in terms of the coefficients.

The no answer for the general problem was proved by a young russian mathematician
Matiyasevich [29, 30] in 1972. His work was using former contributions by Davis, Putnam
and Robinson [9, 40].

Julia Robinson (1919-1985)

She took her PH. D. under Tarski in 1948. She made a major contribution to
the solution of Hilbert’s 10’th problem [9, 40]. In 1976 she became the first
woman mathematician to be elected to the National Academy of Sciences.
In 1982 she was nominated to the presidency of the American Mathematical
Society. A book written by her sister Constance Reid is devoted to her [38].

Interestingly the corresponding problems when real solutions are looked for has a positive
answer. The decision problem over the reals

e is there an algorithm deciding the existence of real solutions to a set of polynomial
equation with integer coefficients ?

was solved with a yes answer by Tarski [46] and Seidenberg [44].

Again the existence of an algorithm raises complexity questions. This is an active field of
research [6, 12, 39, 15, 4]

4. Brief discussion

The role of Hilbert’s problem in the development of real algebraic geometry was very impor-
tant, as it can be understood clearly from the preceeding developments.

But some very important ideas were developed without any connection to these problems.

Morse for example related the change in topology to the existence and local behaviour of
critical points of a function [32].

Morse theory plays a key role in the quantitative [35, 33, 47] and algorithmic aspects of
real algebraic geometry [12, 4].

Olga Oleinik

A former professor at Moscow University, now retired, she lives in Russia. She
worked in several fields of mathematics: topology of real algebraic varieties,
PDE. Over 70 years old, she is still publishing papers.
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